EFFECTS

Pierre-Marie Pédrot

Max Planck Institute for Software Systems

Journées Nationales Géocal-LAC

14th November 2017

«O>r «Fr o« > «E» Q>



S



CIC: « Constructions dans un monde qui bouge »

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy logical system.

o Not just higher-order logic, not just first-order logic
o First class notion of computation and crazy inductive types

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017

2/ 38



CIC: « Constructions dans un monde qui bouge »

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy logical system.

o Not just higher-order logic, not just first-order logic

o First class notion of computation and crazy inductive types

CIC, a very powerful programming language.
o Finest types to describe your programs

o No clear phase separation between runtime and compile time

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017

2/ 38



CIC: « Constructions dans un monde qui bouge »

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy logical system.

o Not just higher-order logic, not just first-order logic

o First class notion of computation and crazy inductive types

CIC, a very powerful programming language.
o Finest types to describe your programs

o No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017

2/ 38



«O> <Fr o« o



«O> <Fr o« -



An Effective Object

One implementation to rule them all...

]
Many big developments using it for computer-checked proofs.

o Mathematics: Four colour theorem, Feit-Thompson, Unimath...
o Computer Science: CompCert, VST, RustBelt...

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 3/38



The Most Important Issue of Them All

Yet CIC suffers from a fundamental flaw.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 4 /38



The Most Important Issue of Them All
Yet CIC suffers from a fundamental flaw.

o You want to show the wonders of Coq to a fellow programmer
o You fire your favourite IDE

o ... and you're asked the PREAPF“‘\ question.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017

4/ 38



The Most Important Issue of Them All
Yet CIC suffers from a fundamental flaw.

o You want to show the wonders of Coq to a fellow programmer
o You fire your favourite IDE

o ... and you're asked the FREAPF“‘A question.

CONLP YOU WRITE A HELL® WORLP

=) E E E DAl
P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 4 /38



This is pretty much standard. By the Curry-Howard correspondence
«O>» <Fr «=Z»r «E>» = Q>
~ P-M.Pédrot (MPI-SWS)  Taming effects in a dependent world ~~ 14/11/2017  5/38



A Well-known Limitation

This is pretty much standard. By the Curry-Howard correspondence
Logic &

o no exceptions, state, non-termination, printing...
o ...

Programming
That means in CIC, amongst which:
and thus no Hello World

Dually, for the same reasons, FSEN& VI (V- VoE I I60 0 (e
o Curry-Howard principle: effects extend your logic.
P.-M. Pédrot (MPI-SWS)

Taming effects in a dependent world

14/11/2017 5/ 38



@ To program more (exceptions, non-termination...)
@ To prove more (classical logic, univalence...)
@ To write Hello World.
«O>r «Fr o« > < 3 Q>
~ P-M.Pédrot (MPI-SWS)  Taming effects in a dependent world ~~ 14/11/2017 6 /38



Thesis

We want a type theory with effects!

@ To program more (exceptions, non-termination...)
@ To prove more (classical logic, univalence...)
® To write Hello World.

It's not just randomly coming up with typing rules though.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world

14/11/2017

6/ 38



Thesis

We want a type theory with effects!

@ To program more (exceptions, non-termination...)
@ To prove more (classical logic, univalence...)
® To write Hello World.

It's not just randomly coming up with typing rules though.

We want a model of type theory with effects.

@ The theory ought to be logically consistent
@ It should be implementable (e.g. decidable type-checking)
@ Other nice properties like canonicity (- n: N implies n~» S ... S0)

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 6 /38



Semantics of type theory have a fame of being horribly complex.

«O>» < Fr «=)r «=)» DA™



Aporias
Semantics of type theory have a fame of being horribly complex.

| won't lie: it is. But part of this fame is nonetheless due to its models.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 7 /38



Aporias
Semantics of type theory have a fame of being horribly complex.
| won't lie: it is. But part of this fame is nonetheless due to its models.

Set-theoretical models: because Sets are a (crappy) type theory.

Qo Sets!
@ Con: Sets!

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 7 /38



Aporias
Semantics of type theory have a fame of being horribly complex.

| won't lie: it is. But part of this fame is nonetheless due to its models.

Set-theoretical models: because Sets are a (crappy) type theory.

Qo Sets!
@ Con: Sets!

Realizability models: construct programs that respect properties.

() Computational, computer-science friendly.

o Con: Not foundational (requires an alien meta-theory), not decidable.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 7 /38



Aporias
Semantics of type theory have a fame of being horribly complex.

| won't lie: it is. But part of this fame is nonetheless due to its models.

Set-theoretical models: because Sets are a (crappy) type theory.

Qo Sets!
@ Con: Sets!

Realizability models: construct programs that respect properties.

Qo Computational, computer-science friendly.

o Con: Not foundational (requires an alien meta-theory), not decidable.

Categorical models: abstract description of type theory.

Q Abstract, subsumes the two former ones.

O Con: Realizability 4 very low level, gazillion variants, intrisically typed, static.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 7 /38



Instead, let's look at what Curry-Howard provides in simpler settings.
«O>» <Fr «=Z»r «E>» = Q>
~ P-M.Pédrot (MPI-SWS)  Taming effects in a dependent world ~~ 14/11/2017 8 /38




Curry-Howard Orthodoxy

Instead, let's look at what Curry-Howard provides in simpler settings.
Logical Interpretations < Program Translations

On the programming side, implement effects using e.g. the monadic style.

o A type transformer T, two combinators, a few equations

o Interpret mechanically effectful programs (e.g. in Haskell)

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 8 /38



Curry-Howard Orthodoxy

Instead, let's look at what Curry-Howard provides in simpler settings.

Logical Interpretations < Program Translations

On the programming side, implement effects using e.g. the monadic style.

o A type transformer T, two combinators, a few equations

o Interpret mechanically effectful programs (e.g. in Haskell)

On the logic side, extend expressivity through proof translation.
o Double-negation = classical logic (callcc)
o Friedman's trick = Markov's rule (exceptions)

o Forcing = —~CH (global monotonous cell)

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017

8 /38



Let us do the same thing with CIC: build syntactic models.

«O>» < Fr «=)r «=)» DA™



Syntactic Models

Let us do the same thing with CIC: build syntactic models.

We take the following act of faith for granted.

CIC is.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 9 /38



Syntactic Models

Let us do the same thing with CIC: build syntactic models.

We take the following act of faith for granted. ,..i ‘

CIC is.
Not caring for its soundness, implementation, whatever. It just is.

Do everything by interpreting the new theories relatively to this foundation!

Suppress technical and cognitive burden by lowering impedance mismatch.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 9 /38



Step 0: Fix a theory T as close as possible to CIC, ideally CIC C T.

«O>» < Fr «=)r «=)» DA™



Syntactic Models Il

Step 0: Fix a theory T as close as possible to CIC, ideally CIC C 7.
Step 1: Define [-] on the syntax of 7 and derive [-] from it s.t.

Fr M: A implies Feic [M] : [A]

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 10 / 38



Syntactic Models Il

Step 0: Fix a theory T as close as possible to CIC, ideally CIC C 7.

Step 1: Define [-] on the syntax of 7 and derive [-] from it s.t.

Fr M: A implies Feic [M] : [A]

Step 2: Flip views and actually pose

FrM:A 2 ke [M]:[4]

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017

10/ 38



Syntactic Models Il

Step 0: Fix a theory T as close as possible to CIC, ideally CIC C 7.
Step 1: Define [-] on the syntax of 7 and derive [-] from it s.t.

Fr M: A implies Feic [M] : [A]

Step 2: Flip views and actually pose

FrM:A 2 ke [M]:[4]

Step 3: Expand 7 by going down to the CIC assembly language,
implementing new terms given by the [-] translation.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 10 / 38



« CIC, the LLVM of Type Theory »

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 11 /38



Syntactic Models Il

Obviously, that's subtle. If you want CIC C T,
o The translation must preserve typing (not easy)

o In particular, it must preserve conversion (stay tuned)

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world

14/11/2017

12 /38



Syntactic Models Il

Obviously, that's subtle. If you want CIC C T,
o The translation must preserve typing (not easy)

o In particular, it must preserve conversion (stay tuned)

Yet, a lot of nice consequences.

o Does not require non-type-theoretical foundations (monism)

o Can be implemented in Coq (software monism)

o Easy to show (relative) consistency, look at [False]

o Inherit properties from CIC: computationality, decidability...

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017

12 /38



Dependency entails one major difference with usual program translations.
«O>r «Fr o« > < 3 Q>
~ P-M.Pédrot (MPI-SWS)  Taming effects in a dependent world ~~ 14/11/2017 13 /38



Conversion

Dependency entails one major difference with usual program translations.

Meet conversion:

A=3 B I'M:B
I'FM: A

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 13 /38



Conversion

Dependency entails one major difference with usual program translations.

Meet conversion:

A=3;B TFM:B
I'EM:A

Bad news 1
Typing rules embed the dynamics of programs!

o 5 = = £ A
P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 13 /38



Conversion

Dependency entails one major difference with usual program translations.

Meet conversion:

A=3;B TFM:B
I'EM:A

Bad news 1

Typing rules embed the dynamics of programs!

Combine that with this other observation and we're in trouble.

Bad news 2

Effects make reduction strategies relevant.

o =) E E E DAl
P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 13 /38



«O> <Fr o« o



A Though Choice

We have two canonical possibilities in presence of effects.

Call-by-value Call-by-name

@ Usual monadic decomposition o More complex model (CBPV)
o Understandable semantics o Counter-intuitive behaviours
o Values still enjoy canonicity o Jeopardizes canonicity
o Good old ML o WTF PLT?
=] = = E E DA

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 14 / 38



Recall conversion:

AEBB

I'M:B

'EM:A

«O>» < Fr «=)r «=)» DA™



Recall conversion:

AEQB

I'M:B

'EM:A

«O>» «Fr «E» < 3 Q>

In case you forgot your glasses:




Problem |

Recall conversion:

A =3 B rrwm:s

'EM: A

In case you forgot your glasses:

CIC has an CBN equational theory.

It's unclear what you can do with CBV dependency...

. and probably type terrorists will start crying foul and calling it heresy.

So we have to stick to CBN to please the conservative reviewers.

(But see e.g. comrade Lepigre's agitprop challenging the bourgeois proof theory.)

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 15 / 38



Assuming rightly | don't care about peer pressure, we have another issue.
«O>r «Fr o« > < 3 Q>
~ P-M.Pédrot (MPI-SWS)  Taming effects in a dependent world ~ 14/11/2017 16 /38



Assuming rightly | don't care about peer pressure, we have another issue.
«O>r «Fr o« > < 3 Q>
~ P-M.Pédrot (MPI-SWS)  Taming effects in a dependent world ~ 14/11/2017 16 /38




Problem |1

Assuming rightly | don't care about peer pressure, we have another issue.

Monadic encodings don't scale to dependent types.

The reason lies in the typing of bind:
bind: TA— (A— TB)— TB.
It's seemingly not possible to adapt it to the dependent case!
dbind : II(z: T A). Il(z: A).T (Bzx)) —» T (B?).

Meanwhile, CBPV naturally extends to dependent types.

We also have to stick to CBN for technical reasons.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017

16 / 38



Life is Life

Like Homer, we're dragged to the horrible CBN side against our will.

Come on, what could possibly go wronger?

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 17 / 38



Life is Life

Like Homer, we're dragged to the horrible CBN side against our will.

Come on, what could possibly go wronger?

Dependent elimination + CBN effects = inconsistency

This is the internal counterpart of the lack of canonicity.

Taming effects in a dependent world

= DA
14/11/2017 17 / 38



Reduction vs. Effects

o Call-by-name: functions well-behaved vs. inductives ill-behaved

o Call-by-value: inductives well-behaved vs. functions ill-behaved

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 18 / 38



Reduction vs. Effects

o Call-by-name: functions well-behaved vs. inductives ill-behaved

o Call-by-value: inductives well-behaved vs. functions ill-behaved

Why is that?

In call-by-name + effects:
(Az. M) N= M{z:= N} ~-  arbitrary substitution
(Ab: bool. M) fail ~»  non-standard booleans

In call-by-value + effects:

(Ax. M) V= M{z:=V} ~» substitute only values
(Ab : unit. fail b) ~ invalid n-rule

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 18 / 38



Eliminating Addiction to Dependence

Recall that dependent elimination is just the induction principle.
For instance, on the boolean type:

'EM:B ' Ny : P{b:=true} ' Ny: P{b:= false}
'k if M then N; else Ny : P{b:= M}

This is a statement reflecting canonicity as an internal property in CIC.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world

14/11/2017 19 / 38



Eliminating Addiction to Dependence

Recall that dependent elimination is just the induction principle.
For instance, on the boolean type:

'-M:B ' Ny : P{b:=true} ' Ny: P{b:= false}
'k if M then N; else Ny : P{b:= M}

This is a statement reflecting canonicity as an internal property in CIC.

But there are effectful closed booleans which are neither true nor false...
Dependent elimination is hardcore intuitionistic.

It makes a very strong assumption about the universe of discourse.

Note also that dependent elimination on X-types implies AC...

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 19 / 38



Dependent elimination + CBN effects = inconsistency.



If there is no solution, there is no problem

Dependent elimination + CBN effects = inconsistency.

Two Easy Ways Out!

@ Embrace inconsistency: truth is a totally overrated social construct.

@ Get into rehab: weaken dependent elimination for a linear fix.

In the remaining of this talk, we will have a look at one instance of each
case, namely exceptions and read-only cells.

o 5 = = £ A
P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 20 / 38



P-M. Pédrot (MPI-SWS)

Taming effects in a dependent world

14/11/2017

21/38

DA



That's literally what we are going to do.

aQ >

] ) = E PENE
P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 21 /38



The Exceptional Translation

Assume some fixed type of exceptions E.

The exceptional translation extends CIC with

raisey : E— A for any A
catchy : A— A+ E for afew specific 4

satisfying a few expected definitional equations.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017

22 /38



The Exceptional Translation

Assume some fixed type of exceptions E.

The exceptional translation extends CIC with

raisey : E— A for any A
catchy : A— A+ E for afew specific 4

satisfying a few expected definitional equations.
CBN ~~ catching exceptions is limited to positive datatypes (inductive).

In particular, by n-expansion, raise(,4.p) € =g Az: A.raisep e.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 22 /38



The Exceptional Implementation, Negative case

Intuitive idea: translate every A : Ointo [A] : ¥A:O.E — A.

[A] : O:=m [4] and [Alg : E — [A] := m2 [4]

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 23 /38



The Exceptional Implementation, Negative case

Intuitive idea: translate every A : Ointo [A] : ¥A:O.E — A.

[A] : O:=m [4] and [Alg : E — [A] := m2 [4]

Because CBN, trivial on the negative fragment:

[IIz: A. B] = Iz: [A].[B]
Mlz: A.Blg e = Mx:[A].[Bls e
[x] = =z

(M N = (M) [N]

[Az: A. M| = Az:[A]. [M]

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 23 /38



The Exceptional Implementation, Positive case
The really interesting case is the inductive part of CIC.

How to implement e.g. [B]z : E — [B]? Or worse [ L]z : E — [L]?

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 24 / 38



The Exceptional Implementation, Positive case

The really interesting case is the inductive part of CIC.

How to implement e.g. [B]z : E — [B]? Or worse [ L]z : E — [L]?
Very simple: add a default case to every inductive type!

Inductive [B] := [true]: [B] |[false]:[B] |Bg:E — [B]

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 24 / 38



The Exceptional Implementation, Positive case
The really interesting case is the inductive part of CIC.
How to implement e.g. [B]z : E — [B]? Or worse [ L]z : E — [L]?
Very simple: add a default case to every inductive type!
Inductive [B] := [true]: [B] |[false]:[B] |Bg:E — [B]

Pattern-matching is translated pointwise, except for the new case.
[IIP:B — 0. P true — P false — I[Ib: B. P ¥]
= IIP:[B] — [O]. P [true] — P [false| — IIb: [B]. P b

o If bis [true], use first hypothesis
o If bis [false], use second hypothesis

o If bis an error By e, reraise e using [P b]y e

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017

24 / 38



«O> <Fr o« o



Every type is inhabited by [-]

and thus the theory is inconsistent!

«O>» «Fr <= « = = Al

v



Time to complain

This gives a syntactic model of all CIC.

Every type is inhabited by [-] and thus the theory is inconsistent!

Still usable for programming. Do you whine about OCaml’s exceptions?

Plus you can use the target CIC to reason on your effectful programs.

o 5 = = £ A
P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 25 /38



Time to complain

This gives a syntactic model of all CIC.

Every type is inhabited by [-] and thus the theory is inconsistent!

Still usable for programming. Do you whine about OCaml’s exceptions?

Plus you can use the target CIC to reason on your effectful programs.

Further interest: classical proof extraction. Indeed:

[—A] = ([A] = E) - E

Allows to prove the following CIC equivalent of Friedman's trick.

Conservativity of classical reasoning on II2 formulae in CIC

If Pand @ are first-order types, Fcic IIp : P. == Q implies Fcic
P.-M. Pédrot (MPI-SWS)

IIp: P. Q.
O 3 = E Da
Taming effects in a dependent world 14/11/2017 25 /38



Recovering Consistency

Actually, one can use Bernardy-Lasson parametricity to recover consistency.

Intuition: in addition to [M] : [A], produce [M]. : [A]: [M] where [A].
encodes the fact that [M] does not generate uncaught exceptions, e.g.

[Mlz: A.B]e f = z:[A].[A]: z— [B]: (f 2)

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world

14/11/2017 26 / 38



Recovering Consistency

Actually, one can use Bernardy-Lasson parametricity to recover consistency.

Intuition: in addition to [M] : [A], produce [M]. : [A]: [M] where [A].
encodes the fact that [M] does not generate uncaught exceptions, e.g.

[Mlz: A.B]e f = z:[A].[A]: z— [B]: (f 2)

But you still have the right to use exceptions locally!

This is exactly Kreisel's realizability for CIC.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 26 / 38



Recovering Consistency

Actually, one can use Bernardy-Lasson parametricity to recover consistency.

Intuition: in addition to [M] : [A], produce [M]. : [A]: [M] where [A].
encodes the fact that [M] does not generate uncaught exceptions, e.g.

[Mlz: A.B]e f = z:[A].[A]: z— [B]: (f 2)

But you still have the right to use exceptions locally!
This is exactly Kreisel's realizability for CIC.

There is a syntactic model of CIC that proves independence of premise (IP):
nA4:0)(P:N—-0O).(n-A—=YX¥n:N.Pn) > ¥n:N.-A - Pn

which is consistent, enjoys canonicity and has decidable type-checking.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 26 / 38



The reader translation, a.k.a. Baby Forcing

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 27 / 38



The Reader Translation
Assume some fixed cell type R.

The reader translation extends type theory with

read : R
into : O—-R—0
entery : A—Ilr:R.into A r

satisfying a few expected definitional equations.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017

28 / 38



The Reader Translation
Assume some fixed cell type R.

The reader translation extends type theory with

read : R
into : O—-R—0
entery : A—Ilr:R.into A r

satisfying a few expected definitional equations.

The into function has unfoldings on type formers:

into (Ilz: A.B) r = Ilz: A.into B r

into A r A for positive A

and it is somewhat redundant:

enterg Ar = into Ar

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017

28 / 38



The Reader Implementation

Assuming 7: R, intuitively:
o Translate A : Ointo [A],: 0O
o Translate M : A into [M],: [A],

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world

14/11/2017

29 / 38



The Reader Implementation

Assuming 7: R, intuitively:
o Translate A : Ointo [A],: 0O
o Translate M : A into [M],: [A],

On the other side of the CBPV adjunction:

d], = O

Mz: A.B], = Hz:(Is:R.[A]).[B],
[x] = zr

[M N, = [M], (As:R.[N]y)

Ax: A M), = Xz:(ls:R.[A]s). [M],

All variables are thunked w.r.t. R!

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017

29 / 38



The Reader Implementation: Inductive Types

PLT tells us we have to take [B], = B.
o It's possible to implement non-dependent pattern matching as usual.

o Preserves definitional computation rules

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 30/ 38



The Reader Implementation: Inductive Types

PLT tells us we have to take [B], = B.
o It's possible to implement non-dependent pattern matching as usual.

o Preserves definitional computation rules

But it's not possible to implement dependent pattern matching!
[IIP:B — O. P true — P false — IIb: B. P 0],

= [IP:R— (R—B) - 0.
(IIs:R.Ps(A_:R.true)) » (Is: R. P s (A_:R.false)) —
IIb:R—B.Prb

P only holds for two specific values but b: R — B can be anything!

We cannot even test in general that b is extensionally one of those values.

o 5 = = £ A
P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 30/ 38



Not All Predicates are Equal

For certain predicates P: R — (R — B) — [, induction still valid though.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 31/38



Not All Predicates are Equal

For certain predicates P: R — (R — B) — [, induction still valid though.

Indeed, if P rb=® r (b r) for some P, the induction principle becomes
(Ils: R.® s true) — (IIs: R.® s false) > [Ib: R —-B.® r(br)

which is provable by case-analysis on b 7.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 31/38



Not All Predicates are Equal

For certain predicates P: R — (R — B) — [, induction still valid though.
Indeed, if P rb=® r (b r) for some P, the induction principle becomes

(IIs: R.® s true) — (IlIs: R.® s false) - IIb: R - B.® r (b )

which is provable by case-analysis on b 7.
Such predicates evaluate « immediately » their argument b.

They only rely on the resulting value!

This property is completely independent from the reader effect.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 31/38



Moi, j'ai dit linéaire, linéaire ? Comme c'est étrange...

Actually we have a generic semantic criterion for valid predicates.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 32 /38



Moi, j'ai dit linéaire, linéaire ? Comme c'est étrange...

Actually we have a generic semantic criterion for valid predicates.

LINEARITY.

o Courtesy of G. Munch, rephrased recently by P. Levy.
o Little to do with « linear use of variables »

o Although tightly linked to linear logic

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017

32/ 38



Linearity in a Nutshell

Defined as an (undecidable) equational property of CBN functions.
A function f: A — Bis linear in A if for all Z: box A,

f (match Z with Box z = z) = match Z with Box 2= fz

where
Inductive box A := Box: A — box A.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017

33 /38



Linearity in a Nutshell

Defined as an (undecidable) equational property of CBN functions.
A function f: A — Bis linear in A if for all Z: box A,

f (match Z with Box z = z) = match Z with Box 2= fz

where
Inductive box A := Box: A — box A.

o ACBN f: A — Bis linear in A if semantically CBV in A.

o Categorically, f linear iff it is an algebra morphism.

o In a pure language, all functions are linear!

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017

33 /38



Linear Dependence is All You Need

We restrict dependent elimination in the following way:

I'-M:B Plinear in b
I'F if M then N; else Ny : P{b:= M}

©

Can be underapproximated by a syntactic criterion
o A new kind of guard condition in CIC
o The CBN doppelganger of the dreaded value restriction in CBV!

©

Every predicate can be freely made linear thanks to storage operators

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 34 /38



A Bishop-style Type Theory

We can generalize this restriction to form Baclofen Type Theory.

Strict subset of CIC
Works with our forcing translation (LICS 2016)
Works with our weaning translation (LICS 2017)

© © o

©

Prevents Herbelin's paradox: CIC + callcc inconsistent

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 35 /38



A Bishop-style Type Theory

We can generalize this restriction to form Baclofen Type Theory.

o Strict subset of CIC
o Works with our forcing translation (LICS 2016)
o Works with our weaning translation (LICS 2017)

o Prevents Herbelin's paradox: CIC + callcc inconsistent

BTT is the generic theory to deal with dependent effects
« Bishop-style, effect-agnostic type theory »

(Take that, Brouwerian HoTT!)

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 35 /38



Implementations

Thanks to the fact we build syntactic models, we can implement them in
Coq through a plugin.

https://github.com/CogHott/coq-effects
https://github.com/CoqHott/exceptional-tt

o Allows to add effects to Coq just today.
o Implement your favourite effectful operators...
o Compile effectful terms on the fly.

o Allows to reason about them in Coq.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 36 / 38


https://github.com/CoqHott/coq-effects
https://github.com/CoqHott/exceptional-tt

Conclusion

(+]

Effects and dependency: not that complicated if sticking to CBN.

o But a trade-off about dependent elimination
o Inconsistency vs. linear dependent elimination

o Even inconsistent theories have practical interest.
o Exceptions enlarge the dynamic behaviour of your proofs
o Provide an unsafe hatch that can be used in a safe context
o An experimentally confirmed notion of effectful type theories, BTT
o Works for forcing, weaning (and callcc?)
o Restriction of dependent elimination on linearity guard condition
o Conjecture: the correct way to add effects to TT

©

Implementation of plugins in Coq: try it out.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 37 /38



Scribitur ad narrandum, non ad probandum

Thanks for your attention.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 14/11/2017 38 /38



